Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems
نویسندگان
چکیده
Abstract Maximal parabolic $L^p$-regularity of linear equations on an evolving surface is shown by pulling back the problem to initial and studying maximal a fixed surface. By freezing coefficients in at time utilizing perturbation argument around freezed time, it that backward difference discretizations along characteristic trajectories can preserve discrete setting. The result applied prove stability convergence nonlinear surface, with linearly implicit differentiation formulae for general locally Lipschitz nonlinearities. used boundedness numerical solutions $L^\infty (0,T;W^{1,\infty })$ norm, which bound terms analysis. Optimal-order error estimates norm obtained combining analysis consistency estimates.
منابع مشابه
construction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
Backward difference time discretization of parabolic differential equations on evolving surfaces
A linear parabolic differential equation on a moving surface is discretized in space by evolving surface finite elements and in time by backward difference formulas (BDF). Using results from Dahlquist’s G-stability theory and Nevanlinna & Odeh’s multiplier technique together with properties of the spatial semi-discretization, stability of the full discretization is proven for the BDF methods up...
متن کاملBackward Euler discretization of fully nonlinear parabolic problems
This paper is concerned with the time discretization of nonlinear evolution equations. We work in an abstract Banach space setting of analytic semigroups that covers fully nonlinear parabolic initial-boundary value problems with smooth coefficients. We prove convergence of variable stepsize backward Euler discretizations under various smoothness assumptions on the exact solution. We further sho...
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ima Journal of Numerical Analysis
سال: 2022
ISSN: ['1464-3642', '0272-4979']
DOI: https://doi.org/10.1093/imanum/drac033